Übungsaufgaben zur Mathematik 1.2 für Lehrämter Dr. rer. nat. Peters

SS 2010 Serie 5

Carsten Erdmann

Abgabetermin: 17.5.2010, 14:45 Uhr (Übung/Briefkasten)

Aufgabe 5.1.

Überprüfen Sie mittels der Definition, ob die folgenden Funktionen auf ihren Definitionsbereich differenzierbar sind.

(a)
$$f_1(x) = x^3$$
 (b) $f_2(x) = \frac{1}{x^2}$ (c) $f_3(x) = \sqrt{x}$ (d) $f_4(x) = \frac{1}{\sin(x)}$

$$f_2(x) = \frac{1}{x^2}$$

$$f_3(x) = \sqrt{x}$$

$$x) = \frac{1}{\sin(x)}$$

Aufgabe 5.2.

Bestimmen Sie mittels Rechenregeln zum Differenzieren jeweils die erste Ableitung der folgenden Funktionen

(a)
$$f_1(x) = \ln(\sqrt{1+x^2})$$

(a)
$$f_1(x) = \ln(\sqrt{1+x^2})$$
 (b) $f_2(x) = \exp(x \cdot \sqrt{1+\frac{1}{x}})$

(c)
$$f_3(x) = (x^2 + 2)\sqrt{x+1}$$
 (d) $f_4(x) = \sin(\cos(x)) \cdot (x^2 + 4x + 1)$

$$f_4(x) = \sin(\cos(x)) \cdot (x^2 + 4x + 1)$$

(e)
$$f_5(x) = \frac{\sqrt{1+x^3} + \ln(x)}{\exp(4x + \sin(x))}$$

5 Punkte

Aufgabe 5.3.

- Bestimmen Sie die Intervalle, in denen die folgenden Funktionen monoton fallend, bzw. monoton wachsend sind!
- (ii) Bestimmen Sie mit Hilfe von (i) die lokalen Extrema der Funktionen!
- (iii) Bestimmen Sie die Intervalle, in denen die folgenden Funktionen konkav, bzw.
- Bestimmen Sie die Wendestellen der Funktionen! (iv)
- Zeichnen Sie die Funktionen! (\mathbf{v})

(a)
$$f_1(x) = x^3 + \frac{15}{2}x^2 + 18x + 1$$
 (b) $f_2(x) = \sin(x) \cdot \cos(x)$

$$f_2(x) = \sin(x) \cdot \cos(x)$$

(c)
$$f_3(x) = e^{2x} (x^2 - 2x - 55)$$

15 Punkte

Aufgabe 5.4.

Berechnen Sie für a > 0 und x > 0 die folgenden Ableitungen:

(a)
$$\frac{d}{dx}a^x$$

(b)
$$\frac{d}{dx}x^{(a)}$$

(a)
$$\frac{d}{dx}a^x$$
 (b) $\frac{d}{dx}x^{(x^a)}$ (c) $\frac{d}{dx}x^{(a^x)}$ (d) $\frac{d}{dx}x^x$ (e) $\frac{d}{dx}x^{(x^x)}$ (f) $\frac{d}{dx}(x^x)^x$

(d)
$$\frac{d}{dx}$$

$$\frac{d}{dx}x^{(x^x)}$$

$$(f)$$
 $\frac{d}{dx}(x^x)$

6 Punkte