Die Theorie der H^p-Räume auf Röhren

1 Einführendes

Definition 1.1. Unter dem Hardy-Raum $H^p = H^p(\mathbb{R}_2^+)$ auf \mathbb{R}_+^2 verstehen wir die Klasse aller holomorphen Funktionen, die

$$\int_{-\infty}^{\infty} |F(x+iy)|^p dx \le A^p < \infty, \quad y > 0, \quad A < \infty.$$
 (1)

genügen. Besser bekannt sind die übereinstimmenden H^p -Räume verbunden mit der Einheitsscheibe $D=\{z\in\mathbb{R}^2;|z|<1\}$. Diese bestehen aus den analytischen Funktionen F, für die

$$\int_{-\pi}^{\pi} |F(re^{i\Theta})| d\Theta \le A^p < \infty \quad 0 \le r < 1$$

qilt.

Definition 1.2. Sei B eine offene Teilmenge des \mathbb{R}^n , dann verstehen wir unter der **Röhre** T_B , mit Basis B die Teilmenge aller $z=(z_1,...,z_n)=(x_1+iy_1,...,x_n+iy_n)=x+iy\in\mathbb{C}_n$ für die $y\in B$. Eine holomorphe Funktion auf der Röhre T_B gehört genau dann zu dem Raum $H^p=H^p(T_B), p>0$, wenn $\exists A<\infty$ so dass

$$\int_{\mathbb{R}^n} |F(x+iy)|^p dx \le A^p, \quad \forall y \in B.$$

Ein anderer Ansatz beruht auf der Tatsache, dass eine Funktion F = u + iv genau dann in einem einfach zusammenhängenden Gebiet analytisch ist, wenn (v, u) der Gradient einer harmonischen Funktion in dieser Region ist. Sei $F = (u_1, ..., u_n)$ eine vektorwertige Funktion, die in einem Gebiet $D \subset \mathbb{R}^n$ definiert ist. F ist genau dann analytisch, wenn für seine partiellen Ableitungen

$$\sum_{i=1}^{n} \frac{\partial u_{j}}{\partial x_{j}} = 0, \quad \frac{\partial u_{i}}{\partial x_{j}} = \frac{\partial u_{j}}{\partial x_{i}} \quad i, j = 1, ..., n$$

gilt. Wir halten fest, dass die zweite Bedingung fordert, dass F in einem einfach zusammenhängenden Gebiet von D, der Gradient einer Funktion h ist und die erste, dass h harmonisch ist. Wohlgemerkt stehen für n=2 oben nichts anderes als die Cauchy-Riemann'schen Gleichungen, in diesem Fall ist u_2+iu_1 eine analytische Funktion von $z=x_1+ix_2$.

Beispiel.

Im Folgenden sei $B \subset \mathbb{R}^n$ offen und zusammenhängend. Wir konstruieren eine Funktion $F \in H^2(T_B)$. Dazu sei f eine Funktion, für die

$$\sup_{y \in B} \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt \le A^2 < \infty \tag{2}$$

gilt. Wir zeigen, dass wenn y auf einer kompakten Teilmenge von B beschränkt ist, eine integrierbare Funktion existiert, die $|e^{2\pi iz \cdot t}f(t)| = e^{-2\pi y \cdot t}|f(t)|$ majorisiert. Dann ist

$$F(z) = \int_{\mathbb{R}^n} e^{2\pi i z \cdot t} f(t) dt \tag{3}$$

eine holomorphe Funktion in T_B . Sei $y_0 \in B$ beliebig, weil B offen, existiert eine Umgebung $N \subset B$ von y_0 . Für alle $y \in N$ gilt

$$\int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y_0 t} e^{-4\pi (y-y_0)t} dt \le A^2.$$

Zerlegen wir den \mathbb{R}^n in eine endliche Menge von disjunkten vieleckigen Kegeln $\Gamma_1,...,\Gamma_k$ mit Spitze im Nullpunkt und wenn immer 2 Punkte, v und w zu einem dieser Kegel gehören, dann ist der Winkel zwischen den beiden Segmenten 0v und 0w kleiner als $\pi/4$. Weil N eine Umgebung von y_0 ist, existiert ein $\delta>0$, sodass $\{y:|y-y_0|=\delta\}\subset N$. Sei $\epsilon=4\pi\delta/\sqrt{2}$ und y so dass $(y_0-y)\in\Gamma_j$ und $|y-y_0|=\delta$, dann ist $\epsilon|t|\leq -4\pi(y-y_0)\cdot t$ für alle $t\in\Gamma_j$. Es folgt

$$\int_{\Gamma_j} |f(t)|^2 e^{-4\pi y_0 \cdot t} e^{\epsilon|t|} dt \le \int_{\Gamma_j} |f(t)|^2 e^{-4\pi y_0 \cdot t} e^{-4\pi (y-y_0) \cdot t} dt \le A^2$$

und

$$\int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y_0 \cdot t} e^{\epsilon |t|} dt = \sum_{i=1}^k \int_{\Gamma_j} |f(t)|^2 e^{-4\pi y_0 \cdot t} e^{\epsilon |t|} dt \le kA^2 < \infty.$$

Also

$$\begin{split} \int_{\mathbb{R}^n} |f(t)| e^{-2\pi y_0 \cdot t} e^{(\epsilon/4)|t|} dt &= \int_{\mathbb{R}^n} (|f(t)| e^{(\epsilon/2)|t|} e^{-2\pi y_0 \cdot t}) e^{-(\epsilon/4)|t|} dt \\ &\leq \left(\int_{\mathbb{R}^n} |f(t)|^2 e^{\epsilon|t|} e^{-4\pi y_0 \cdot t} dt \right)^{1/2} (\int_{\mathbb{R}^n} e^{-(\epsilon/2)|t|} dt)^{1/2} < \infty. \end{split}$$

Weil y in einer Umgebung mit Radius $\epsilon/8\pi$ um y_0 liegt, ergibt sich

$$|f(t)|e^{-2\pi y \cdot t} \le |f(t)|e^{-2\pi y_0 \cdot t}e^{(\epsilon/4)|t|},$$

also eine integrierbare Funktion. Eine Anwendung des Satzes von Plancherel für $y \in B$ liefert

$$\int_{\mathbb{R}^n} |F(x+iy)|^2 dx = \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt \le A^2 < \infty.$$

2 H^p -Theorie

Satz 2.1. $F \in H^2(T_B)$ genau dann, wenn F die Form (3) hat und f (2) erfüllt.

Definition 2.2. Für $B \subset \mathbb{R}^n$ bezeichnen wir mit B^c die konvexe Hülle von B. B^c ist die kleinste konvexe Menge, die B enthält.

Korollar 2.3. Wenn $F \in H^2(T_B)$ dann ist das Integral in (3) für alle $z \in T_{B^c}$ wohldefiniert und stellt eine Funktion in $H^2(T_{B^c})$ mit der selben Norm wie F dar.

Beweis. Als erstes halten wir fest, dass der Satz von Plancherel zusammen mit Satz 2.1 impliziert, dass

$$||F||_2 = \sup_{u \in B} \left(\int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt \right)^{\frac{1}{2}}.$$
 (4)

Sei

$$S = \left\{ y \in \mathbb{R}^n : \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt \le ||F||_2^2 \right\},\,$$

dann ist $B\subset S$ und es bleibt zu zeigen, dass S konvex ist. Nehmen wir dafür an, dass $y',y''\in S$ mit $y=\alpha y'+(1-\alpha)y''$, $0\leq\alpha\leq 1$. Unter Ausnutzung der Ungleichung $u^{\alpha}v^{1-\alpha}\leq\alpha u+(1-\alpha)v$ (gültig für alle nichtnegativen Zahlen u,v) erhalten wir

$$\begin{split} \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt &= \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi \alpha y' \cdot t} e^{-4\pi (1-\alpha)y'' \cdot t} dt \\ &= \int_{\mathbb{R}^n} (|f(t)|^2 e^{-4\pi y' \cdot t})^{\alpha} (|f(t)|^2 e^{-4\pi y'' \cdot t})^{1-\alpha} dt \\ &\leq \alpha \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y' \cdot t} dt + (1-\alpha) \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y'' \cdot t} dt \\ &\leq \|F\|_2^2 \, . \end{split}$$

Somit $y \in S$ und S konvex.

Im Folgenden sei die Basis B konvex und offen.

Korollar 2.4. Eine notwendige und hinreichende Bedingung dafür, dass $H^2(T_B)$ eine Funktion ungleich Null enthält ist, dass keine komplette Gerade in B liegt.

Beweis. Angenommen B enthält eine Gerade, die alle Punkte y enthält, für die $y = \alpha \tau + b, -\infty < \tau < \infty$ gilt. Weiterhin sei $N(t_0)$ die sphärische Umgebung im \mathbb{R}^n von t_0 , so dass $a \cdot t$ außerhalb von 0 begrenzt ist. Dann gilt für y auf dieser Linie, dass $F \in H^2(T_B)$ und f erfüllt (2) und (3). Es gilt

$$||F||_2^2 \ge \int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt \ge \int_{N(t_0)} |f(t)|^2 e^{-4\pi t(\alpha \cdot t)} e^{-4\pi (b \cdot t)} dt.$$

Aber weil $\tau \in \mathbb{R}$ beliebig, können wir $e^{-4\pi\tau(\alpha \cdot t)}$ so groß in $N(t_0)$ machen, wie wir wollen. Also f(t) = 0 für fast alle $t \in N(t_0)$.

Um zu sehen, dass wenn B keine Linie enthält und $H^2(T_B)$ dann eine Funktion $F \neq 0$ enthält, nehmen wir an, dass solch eine Menge B die Existenz eines offenen konvexen Kegels, Γ impliziert. Wobei Γ keine Gerade, aber B enthält. Es folgt, dass Γ regulär ist und für solche Kegel $H^2(T_{\Gamma})$ ein $F \neq 0$ enthält.

Wenn y_0 ein Randpunkt von B ist, eröffnet sich die Frage, ob der Grenzwert

$$F(x+iy_0) = \lim_{y \to y_0, y \in B} F(x+iy) \tag{5}$$

existiert und wenn ja, in welchem Sinn?

Als erstes halten wir fest, dass wenn y_0 ein Randpunkt von B ist, dass (wegen (4) und Fatou's Lemma)

$$\int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y_0 \cdot t} dt \le ||F||_2^2.$$

Weil $f(t)e^{-2\pi y_0 \cdot t}$ eine Funktion in $L^2(\mathbb{R}^n)$ ist, können wir die Definition des Integrals in (3) ausweiten zu $z = x + iy_0$, indem wir die inverse Fouriertransformation benutzen. Wir erhalten also

$$F(x+iy_0) = \int_{\mathbb{R}^n} e^{2\pi i(x+ty_0)\cdot t} f(t)dt.$$
 (6)

In diesem Sinne kann man indem die Fouriertransformierte einer Funktion $F_y = F(\cdot + iy)$ nimmt, dann zum Limes übergeht und die inverse Fouriertransformierte nimmt, eine Antwort auf die Frage gegeben werden.

Beispiel. Man könnte also annehmen, dass wie im Eindimensionalen, dass $F(x+iy) \to F(x+iy_0)$ falls $y \to y_0, y \in B$, entweder bzgl. der L^2 -Norm oder für fast alle x. Jedoch ist dies im Allgemeinen falsch, wie das folgende Beispiel zeigt.

Sei l eine Linie im \mathbb{R}^2 mit der Form $y \cdot a = \beta$ (wobei a ein fester Vektor und $\beta \in \mathbb{R}$) und y_1 ein Punkt, der nicht auf dieser Linie liegt. Durch diese Linie wird der \mathbb{R}^2 in 2 disjunkte Halbräume geteilt. Nehmen wir weiterhin an, dass y_1 in demjenigen Halbraum ist, für den $y \cdot a > \beta$ gilt. Dann gilt, dass die Funktion von 2 komplexen Variablen $z = (z_1, z_2) = (x+iy)$ definiert durch $G(z) = \exp(-i\rho(z \cdot a - i\beta)), \rho > 0$, $|G(z)| = \exp(\rho(y \cdot a - \beta))$ erfüllt. Diese ist 1 für $y \in l$, kleiner 1 im Halbraum, welcher nicht y_1 enthält und gleich einer Zahl N > 1, wenn $y = y_1$. Dieses N kann natürlich so groß gemacht werden, wie man will, indem man ρ groß genug wählt. Weiterhin gilt, dass $|G(z)| \leq N$, wenn z = x + iy der Bedingung $(y_1 - y) \cdot a \geq 0$ genügt.

Nehmen wir jetzt an, dass B eine Scheibe im \mathbb{R}^2 ist mit 0 als Grenzpunkt und in der oberen Halbebene liegend. Wir wählen eine Folge $\{y_k\}$ auf dem Rand von B mit $y_k \to 0$. Weiterhin sei $\{\sigma_k\}$ eine Folge von Sektoren von B, jeder von diesen besteht aus einem Gebiet zwischen einer Linie l_k , welche beide Ränder von B von beiden Seiten von y_k schneidet, und dem Bogen auf dem Rand, welcher y_k enthält. Weiterhin nehmen wir an, dass die l_k 's so nahe an den den l_k 's liegen, dass die l_k 's paarweise disjunkt sind und l_k parallel zu der Tangente in l_k ist. Nun können wir für jedes l_k eine Funktion l_k konstruieren, für die gilt dass

- (i) G_k ist analytisch in \mathbb{C}_2
- (ii) $|G_k(x+iy)|$ hängt lediglich von y ab
- (iii) $|G_k(z)| \leq 1$ wenn $z \in T_B \setminus T_{\sigma_k}$
- (iv) $|G_k(x+iy_k)| = 1 + 2^{k+2} = N_k$ und für $z \in T_{\sigma_k} : |G_k(z)| \le N_k$.

Weiterhin definieren wir eine Funktion F durch

$$F(z) = \sum_{k=1}^{\infty} 2^{-k} G_k(z).$$

Falls $z \in T_B$, dann gehört es entweder zu genau einer Röhre $T_{\sigma_{k_0}}$ oder zu keiner. Für den ersten Fall ergibt sich wegen (iii) und (iv)

$$|F(z)| \le \sum_{k=1}^{k_0-1} 2^{-k} + (2^{-k_0} + 4) + \sum_{k=k_0+1}^{\infty} 2^{-k} = 5,$$

und im zweiten Fall ergibt sich

$$|F(z)| \le \sum_{k=1}^{\infty} 2^{-k} = 1.$$

Also auf alle Fälle $F \in H^{\infty}(T_B)$. Wegen (ii) und (iv) können wir Punkte $y_k' \in \sigma_k$ finden, die so nahe an y_k sind, dass $|G_k(x+iy_k')| > N_k - 1$, k = 1, 2, ... Also

$$|F(x+iy'_k)| \ge 2^{-k}|G_k(x+iy'_k)| - \sum_{j\neq k} 2^{-j}|G_k(x+iy'_k)|$$

$$> 2^{-k}(N_k-1) - \sum_{j\neq k} 2^{-j}$$

$$> 4-1=3$$

Dies zeigt, dass wenn wir den Grenzpunkt 0 mit einer Folge erreichen, die alle Sektoren σ_k umgeht, dass dann $|F(x+iy)| \leq 1$ für alle y in dieser Folge. Andererseits $\lim_{k\to\infty} y_k' = 0$ und $|F(x+iy_k')| > 3$. Dies zeigt, dass der punktweise Limes

$$\lim_{y \in B, y \to 0} F(x + iy)$$

nicht für jedes $x \in \mathbb{R}^2$ existieren kann.

Um ein Beispiel für eine Funktion im $H^2(T_B)$, welche keinen Limes bzgl. der L^2 -Norm hat, genügt es eine Funktion $G \in H^2(T_{B'})$, wobei $\overline{B} \subset B'$, sodass $G(x+i0) = G(x) \neq 0$, zu finden und diese dann mit F zu multiplizieren. Dann ist

$$\int_{\mathbb{R}^n} |F(x+iy)G(x+iy)|^2 dx \ge 9 \int_{\mathbb{R}^n} |G(x+iy)|^2 dx$$

für $y = y'_k$, k = 1, 2, und

$$\int_{\mathbb{R}^n} |F(x+iy)G(x+iy)|^2 dx \le \int_{\mathbb{R}^n} |G(x+iy)|^2 dx$$

wenn $y \in B$ und $y \notin \sigma_k, k = 1, 2, \dots$. Daher kann

$$\lim_{y \in B, y \to 0} F(x+iy)G(x+iy)$$

nicht in der L^2 -Norm existieren. Ein Beispiel einer solchen Funktion ist

$$G(z) = \frac{1}{(z_1+i)(z_2+i)}$$
 $z = (z_1, z_2) = (x_1+iy_1, x_2+iy_2),$ $y_1, y_2 > -\frac{1}{2}.$

Sie ist definiert und analytisch in $T_{B'}$ mit $\overline{B} \subset B'$ und

$$\int_{\mathbb{R}^n} |G(x+iy)|^2 dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{|x_1 + i(y_1 + 1)|^2 |x_2 + i(y_2 + 1)|^2} dx_1 dx_2
\leq \left\{ \int_{-\infty}^{\infty} \frac{1}{x^2 + \frac{1}{4}} dx \right\}^2 < \infty.$$

Also $G \in H^2(T_{B'})$.

Definition 2.5. Ein offenes Vieleck im \mathbb{R}^n ist das Innere der konvexen Hülle einer endlichen Teilmenge des \mathbb{R}^n .

Korollar 2.6. Sei P ein offenes Vieleck in \mathbb{R}^n und $F \in H^2(T_P)$. Wenn wir die Definition von F zu der Menge $T_{\overline{P}}$ wie in (6) erweitern, dann ist die Abbildung $y \to F(x+iy)$, von \overline{P} nach $L^2(\mathbb{R}^n)$, stetig.

Beweis. Es genügt, aufgrund des Satzes von Plancherel zu zeigen, dass $y \to f(t)e^{-2\pi y \cdot t}$ stetig ist. Angenommen \overline{P} ist die konvexe Hülle der endlichen Menge $\{y_1,...,y_k\} \subset \mathbb{R}^n$. Dann ist

$$G(t) = \sum_{j=1}^{k} e^{-4\pi y_j \cdot t} |f(t)|^2$$

integrierbar in \mathbb{R}^n . Außerdem ist G die Majorante für $e^{-4\pi y \cdot t}|f(t)|^2$ für alle $y \in \overline{P}$. Sei $y \in \overline{P}$, mit $y = \alpha_1 y_1 + \alpha_2 y_2 + \ldots + \alpha_k y_k, \alpha_j \geq 0, j = 1, \ldots, k$ und $\sum_{j=1}^k \alpha_j = 1$. Es folgt

$$e^{-4\pi y \cdot t} = \exp\left\{-4\pi \sum_{j=1}^{k} \alpha_j (y_j \cdot t)\right\} = \prod_{j=1}^{k} (e^{-4\pi (y_j \cdot t)})^{\alpha_j} \le \sum_{j=1}^{k} \alpha_j e^{-4\pi y_j \cdot t}$$

Für $y, \overline{y} \in \overline{P}, y \to \overline{y}$, ergibt sich

$$|f(t)e^{-2\pi y\cdot t} - f(t)e^{-2\pi \overline{y}\cdot t}|^2 \to 0.$$

Diese Konvergenz kann man durch 4G(t) abschätzen. Die Behauptung folgt durch Anwendung des Satzes über majorisierte Konvergenz.

Korollar 2.7. Sei B eine offene, konvexe Teilmenge des \mathbb{R}^n und y_0 ein Punkt auf seinem Abschluss. Weiterhin sei $F \in H^2(T_B)$ und P ein offenes Vieleck, welches in B enthalten ist, mit y_0 als Grenzpunkt. Dann folgt aus $y \to y_0$ in P, dass $F(x+iy) \to F(x+iy_0)$ bzgl. der L^2 -Norm, wobei $F(x+iy_0)$ wie in (6) definiert ist.

Beweis. Weil $H^2(T_B) \subset H^2(T_P)$ ist dies ein Spezialfall des Korollars 2.6.

Satz 2.8. Sei B eine offene konvexe Teilmenge des \mathbb{R}^2 und $y_0 \in \partial B$. Dann existiert

$$\lim_{y \to y_0, y \in B} F(x + iy) = F(x + iy_0)$$

in L^2 für jedes $F \in H^2(T_B)$ genau dann, wenn y_0 ein vieleckiger Randpunkt von B ist.

Bemerkung:

Wenn der Limes in (5) existiert, dann bezeichnen wir ihn als **unbeschränkten Limes**. Wenn ein solcher Limes immer dann exisiert, wenn $y \to y_0$ innerhalb eines Vielecks in B, wobei y_0 ein Randpunkt ist, dann sagen wir dass der **beschränkte Limes** in y_0 existiert. In diesem Sinne behauptet Korollar (2.7), dass L^2 -begrenzte Limiten an allen Randpunkten für alle H^2 -Funktionen existieren. Währenddessen Satz (2.8) die notwendigen und hinreichenden Bedingungen für die Existenz von L^2 -unbeschränkten Limiten angibt (für n=2).

Lemma 2.9. Sei $F \in H^p(T_B), p > 0$ und $B_0 \subset B$, sodass $d(B_0, \partial B) = \inf\{|y_1 - y_2| : y_1 \in B_0, y_2 \notin B\} \ge \epsilon > 0$, dann existiert eine Konstante $C = C(\epsilon, n)$, sodass

$$\sup_{z \in T_{B_0}} |F(z)| \le C \|F\|_p.$$

Beweis. Sei $z_0 = x_0 + iy_0 \in T_{B_0}$ und $S_{\epsilon} = \{z \in \mathbb{C}^n : |z - z_0| < \epsilon\}$. Wenn $\sum_{\epsilon} = \{y \in \mathbb{R}^n : |y - y_0| < \epsilon\}$ dann ist $S_{\epsilon} \subset T_{\sum_{\epsilon}} \subset T_B$. Es folgt

$$\left(\int_{S_{\epsilon}} |F(z)|^{p} dx dy\right)^{1/p} \leq \left(\int_{T_{\sum_{\epsilon}}} |F(z)|^{p} dx dy\right)^{1/p} \\
= \left(\int_{\sum_{\epsilon}} \left\{\int_{\mathbb{R}^{n}} |F(x+iy)|^{p} dx\right\} dy\right)^{1/p} \\
\leq \|F\|_{p} \left(\Omega_{n} \epsilon^{n}\right)^{1/p},$$

wobei Ω_n das Volumen des Einheitsballes im \mathbb{R}^n bezeichnet. Andererseits gilt, weil $|F|^p$ subharmonisch ist, dass

$$|F(z_0)|^p \le \Omega_{2n}^{-1} \epsilon^{-2n} \left(\int_{S_{\epsilon}} |F(z)|^p dx dy \right).$$

Insgesamt also $|F(z_0)| \leq C ||F||_p$, wobei $C = (\Omega_n/\Omega_{2n})^{1/p} \epsilon^{-n/p}$.

Um den Beweis für Satz (2.1) zu beenden, müssen wir noch zeigen, dass wenn $F \in H^2(T_B)$, dann existiert eine Funktion f, die (2) erfüllt. Dazu sei f_y für $y \in B$ die Fouriertransformierte von F(x+iy), verstanden als eine Funktion von x. Es ist ausreichend zu zeigen, dass wenn $y,y' \in B$, dann $e^{2\pi y' \cdot t} f_{y'}(t) = e^{2\pi y \cdot t} f_y(t)$. Dann ist $f(t) = e^{2\pi y \cdot t} f_y(t)$ fast überall definiert und unabhängig von $y \in B$ erfüllt f (2) mit A = ||F||.

Dazu nehmen wir an, dass y,y' in einem Quader liegen, dessen Abschluss ebenfalls in B liegt, weiterhin sollen die Seiten parallel zu den Koordinatenachsen verlaufen. Des weiteren nehmen wir an, dass |F(x+iy)| eine Funktion von x ist und von einer Funktion majorisiert wird, welche schnell in ∞ verschwindet und konstant für $y \in Q$ ist. Außerdem kann man davon ausgehen, dass $y,y' \in Q$ von der Form $y=(\eta_1,y_2,...,y_n)$ und $y'=(\eta'_1,y_2,...,y_n)$ mit $\eta'_1 \geq \eta_1$, dann folgt wegen dem Integral Satz von Cauchy, dass

$$0 = \int_{-R}^{R} e^{-2\pi i(x_1+i\eta_1)t_1} F(x_1+i\eta_1,...,x_n+iy_n) dx_1$$

$$+ \int_{\eta_1}^{\eta'_1} e^{-2\pi i(R+i\eta)t_1} F(R+i\eta,...) d\eta$$

$$+ \int_{R}^{-R} e^{-2\pi i(x_1+i\eta'_1)t_1} F(x_1+i\eta'_1,...) dx_1$$

$$+ \int_{\eta'_1}^{\eta_1} e^{-2\pi i(-R+i\eta)t_1} F(-R+i\eta,...) d\eta.$$

Nach Integration in $x_2, ..., x_n$ erhält man

$$e^{2\pi y \cdot t} f_y(t) = \int_{\mathbb{R}^n} e^{-2\pi i(x+iy) \cdot t} F(x+iy) dx$$
$$= \int_{\mathbb{R}^n} e^{-2\pi i(x+iy') \cdot t} F(x+iy') dx$$
$$= e^{2\pi y' \cdot t} f_y(t).$$

Nach Lemma (2.9) ist F beschränkt auf T_Q , z.B. durch $|F(z)| \leq M$ für $z \in T_Q$. Daher ist es möglich $F^{(\epsilon)}$ durch

$$F^{(\epsilon)}(z) = e^{\left\{-\varepsilon \sum_{j=1}^{n} z_j^2\right\}} F(z)$$

zu definieren. Für $z=(z_1,...,z_n)\in T_Q$ ergibt sich

$$|F^{(\varepsilon)}(x+iy)| \le Me^{\varepsilon na^2}e^{-|x|^2\varepsilon}$$

für $y \in Q$ und $a = \max_{y \in Q} \{|y_1|, ..., |y_n|\}$. Bilden wir die Fouriertransformierte $f_y^{(\epsilon)}$ von $F^{(\epsilon)}(x+iy)$ dann folgt

$$e^{2\pi y \cdot t} f_y^{(\epsilon)}(t) = e^{2\pi y' \cdot t} f_{y'}^{(\epsilon)}(t) \tag{7}$$

für $y, y' \in Q$. Aber

$$\int_{\mathbb{R}^n} |F^{(\epsilon)}(x+iy) - F(x+iy)|^2 dx \to 0 \quad \text{für} \quad \epsilon \to 0$$

Daher bleibt die Gleichung (7) im Limes, wenn $\epsilon \to 0$. Daher können wir den Satz von Plancherel anwenden und erhalten die L^2 -Konvergenz $f_y^{(\epsilon)} \to f_y$ und $f_{y'}^{(\epsilon)} \to f_{y'}$. Also

$$e^{2\pi y \cdot t} f_y(t) = e^{2\pi y' \cdot t} f_{y'}(t)$$

für fast alle t.

3 Röhren über Kegel

Definition 3.1. Unter einem offenen Kegel verstehen wir eine Teilmenge $\Gamma \subset \mathbb{R}^n$ für die gilt dass

- (i) $\Gamma \neq \emptyset$
- (ii) $0 \notin \Gamma$
- (iii) wenn $x, y \in \Gamma$ und $\alpha, \beta > 0$, dann $\alpha x + \beta y \in \Gamma$.

Offensichtlich ist Γ konvex.

Definition 3.2. Ein abgeschlossener Kegel ist der Abschluss eines offenen Kegels. Falls Γ ein offener Kegel ist, dann ist $\Gamma^* = \{x \in \mathbb{R}^n : x \cdot t \geq 0, t \in \Gamma\}$ abgeschlossen. Wenn Γ^* ein nichtleeres Inneres hat, ist er ein abgeschlossener Kegel, man sagt auch, dass Γ regulär ist. Γ^* ist der duale Kegel von Γ .

Beispiel. Für n=1 sind die offenen Kegel die Halblinien $\{x\in\mathbb{R}^n:x>0\}$ und $\{x\in\mathbb{R}^n:x<0\}$. Für n=2 sind die offenen Kegel die winkeligen Gebiete zwischen zwei sich im Ursprung schneidenden Geraden, mit einem Schnittwinkel $\leq \pi$. Solche Kegel sind genau dann regulär, wenn der Schnittwinkel echt kleiner π ist.

Satz 3.3. Sei Γ ein offener Kegel. Dann ist $F \in H^2(T_{\Gamma})$ genau dann, wenn

$$F(z) = \int_{\Gamma^*} e^{2\pi i z \cdot t} f(t) dt \tag{8}$$

wobei f eine messbare Funktion im \mathbb{R}^n ist, für die

$$\int_{\Gamma^*} |f(t)|^2 dt < \infty$$

gilt. Weiterhin gilt

$$||F||_2 = (\int_{\Gamma^*} |f(t)|^2 dt)^{1/2}.$$

Außerdem ist die Beziehung $F \leftrightarrow f$ eine unitäre lineare Abbildung vom $H^2(T_{\Gamma})$ in den $L^2(\Gamma^*)$. $H^2(T_{\Gamma})$ enthält eine Funktion ungleich Null genau dann, wenn Γ regulär ist.

Beweis. Weil $y \cdot t \geq 0$ für $y \in \Gamma$ und $t \in \Gamma^*$, folgt das $F \in H^2(T_{\Gamma})$, wenn es die Form (8) hat, mit $f \in L^2(\Gamma^*)$, unmittelbar aus Satz (2.1). Angenommen $F \in H^2(T_{\Gamma})$, dann folgt aus Satz 2.1 und (4)

$$F(z) = \int_{\mathbb{R}^n} e^{2\pi i z \cdot t} f(t) dt$$

mit

$$||F||_2^2 = \sup_{y \in \Gamma} \int_{\mathbb{R}^n} e^{-4\pi y \cdot t} |f(t)|^2 dt.$$

Wir zeigen, dass f im Komplement von Γ^* verschwindet. Wenn $t_0 \notin \Gamma^*$, dann existiert ein $y_0 \in \Gamma$, sodass $y_0 \cdot t_0 < 0$. Das heißt es existiert eine Umgebung von t_0 , $N = N(t_0) \subset \mathbb{R}^n \backslash \Gamma^*$ und ein $\delta > 0$ sodass $y_0 \cdot t < -\delta < 0$ für $t \in N$.

Also $(ky_0) \cdot t < -k\delta$ für $t \in N$ und k > 0. Weil $ky_0 \in \Gamma$ folgt

$$\int_N e^{-4\pi k y_0 \cdot t} |f(t)|^2 dt \le \int_{\mathbb{R}^n} e^{-4\pi k y_0 \cdot t} |f(t)|^2 dt \le ||F||_2^2 < \infty.$$

Dies impliziert

$$\int_{N} e^{4\pi k\delta} |f(t)|^2 dt \le ||F||_2^2 < \infty$$

für alle k > 0 und natürlich auch f(t) = 0 für fast alle t in $N(t_0)$. Es folgt, dass f(t) = 0 für fast alle t außerhalb Γ^* . Dies beweist die Behauptung.

Bemerkung:

Im klassischen Sinne, wenn F zu H^2 zusammen mit der oberen Halbebene gehört, kann man dei Cauchy'sche Integralformel

$$F(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{F(\zeta)}{\zeta - z} d\zeta \tag{9}$$

beweisen, wobei F in mit Hilfe seiner Randpunkte ausgedrückt wird. Im Folgenden zeigen wir, dass man dies auch auf den Fall erweitern kann, falls die Basis ein Kegel Γ ist, der im \mathbb{R}^n liegt. Diese Darstellung enthält lediglich diejenigen Randwerte, für die $y \in \Gamma$ gegen einen Randpunkt von Γ . Die Existenz folgt aus dem folgenden Korollar:

Korollar 3.4. Sei Γ ein offener Kegel in \mathbb{R}^n und $F(x+iy) \in H^2(T_\Gamma)$, dann existiert eine Funktion F(x) auf \mathbb{R}^n , sodass $F(x+iy) \to F(x)$ im Sinne der L^2 -Norm, wenn $y \to 0$ für $y \in \Gamma$.

Beweis. Sei F(x) die inverse Fouriertransformierte von f, also

$$F(x) = \int_{\Gamma^*} e^{2\pi i x \cdot t} f(t) dt.$$

Aber (8) fordert, dass F(x+iy) die inverse Fouriertransformierte von $e^{-2\pi y \cdot t} f(t)$ ist. Weil $e^{-2\pi y \cdot t} f(t) \to f(t)$ in der L^2 -Norm, wenn $y \to 0$, folgt die Aussage aus dem Satz von Plancherel.

Definition 3.5. Für $z = x + iy \in T_{\Gamma}$ definieren wir den **Cauchy-Kern** K verbunden mit der Röhre T_{Γ} durch

$$K(z) = \int_{\Gamma^*} e^{2\pi i z \cdot t} dt = \int_{\Gamma^*} e^{2\pi i x \cdot t} e^{-2\pi y \cdot t} dt.$$

Offenbar ist K stetig auf T_{Γ} . Als eine Funktion von $x=\Re\{z\}$ gehört K zu $L^2(\mathbb{R}^2)$. Durch den Satz von Plancherel folgt

$$\int_{\mathbb{R}^n} |K(x+iy)|^2 dx = \int_{\Gamma^*} e^{-4\pi y \cdot t} dt = K(2iy)$$
 (10)

für alle $y \in \Gamma$.

Satz 3.6. Wenn $F \in H^2(T_{\Gamma})$ dann ist

$$F(z) = \int_{\mathbb{R}^n} K(z - \xi) F(\xi) d\xi$$

für alle $z \in T_{\Gamma}$, wobei $F(\xi) = \lim_{\eta \to 0, \eta \in \Gamma} F(\xi + i\eta)$ als Limes einer Funktion aus Korollar (3.4) zu verstehen ist.

Beweis. Wegen den Sätzen 3.3 und Korrolar 3.4 ergibt sich

$$F(z) = F(x + iy) = \int_{\Gamma^*} e^{2\pi i z \cdot t} f(t) dt$$

wobei f die Fouriertransformierte von $F(\xi) = \lim_{\eta \to 0, \eta \in \Gamma} F(\xi + i\eta)$. Das heißt, dass f der Limes im Sinne der L^2 -Norm von der Funktionenfolge

$$f_k(t) = \int_{|\xi| < k} f(\xi) e^{-2\pi i t \cdot \xi} d\xi$$

k = 1, 2, 3, ... ist. Unter Ausnutzung des Satzes von Fubini und der Tatsache, dass $K(x - \xi + iy)$, als eine Funktion von ξ , zu $L^2(\mathbb{R}^n)$ gehört, erhalten wir

$$F(z) = \lim_{k \to \infty} \int_{\Gamma^*} e^{2\pi i z \cdot t} f_k(t) dt$$

$$= \lim_{k \to \infty} \int_{\Gamma^*} e^{2\pi i z \cdot t} \left\{ \int_{|\xi| \le k} F(\xi) e^{-2\pi i t \cdot \xi} d\xi \right\} dt$$

$$= \lim_{k \to \infty} \int_{|\xi| \le k} F(\xi) \left\{ \int_{\Gamma^*} e^{2\pi i (z - \xi) \cdot t} dt \right\} d\xi$$

$$= \int_{\mathbb{R}^n} F(\xi) K(z - \xi) d\xi,$$

was den Satz beweist.

Definition 3.7. Im Eindimensionalen Fall kann man den Poisson-Kern

$$P(x,y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$

mit Hilfe des Cauchy-Kerns ausdrücken. Für z = x + iy, y > 0 ist

$$P(x,y) = \frac{|K(z)|^2}{K(2iy)}.$$

Um diese Definition zu erweitern, nehmen wir an, dass T_{Γ} eine Röhre, mit Basis Γ , ein regulärer Kegel ist, sowie K der zugehörige Cauchy-Kern. Der Poisson-Kern verbunden mit T_{Γ} ist durch

$$\mathscr{P}(x,y) = \frac{|K(x+iy)|^2}{K(2iy)}$$

 $mit \ z = x + iy \in \Gamma \ definiert.$

Es ist bekannt, dass K(x+iy), betrachtet als eine Funktion von x zu $L^2(\mathbb{R}^n)$ gehört. Deshalb gehört $\mathscr{P}(\cdot,y)$ zu $L^1(\mathbb{R}^n)$. Wir zeigen, dass $\mathscr{P}(\cdot,y)$ auch zu $L^\infty(\mathbb{R}^n)$ gehört. Dazu zeigen wir, dass K(x+iy) für alle $y \in \Gamma$ und unabhängig von x beschränkt ist. Jedoch gilt

$$|K(x+iy)| = |\int_{\Gamma^*} e^{2\pi i(x+iy)\cdot t} dt| \le \int_{\Gamma^*} e^{-2\pi y\cdot t} dt = K(iy).$$

Daher genügt es zu zeigen, dass K(iy) für alle $y \in \Gamma$ endlich ist. Wenn $y \in \Gamma$, dann existiert ein $\delta = \delta_y > 0$, sodass $\delta |t| \leq y \cdot t$ für alle $t \in \Gamma^*$. Wir beschränken uns darauf dies für alle $t \in \Gamma^*$, für die |t| = 1 gilt, zu zeigen. Aufgrund der Definition von Γ^* erhalten wir $0 \leq y \cdot t$. Andererseits ist eine Gleichheit unmöglich, ansonsten könnten wir, weil Γ offen ist, ein $u \in \mathbb{R}^n$ finden, sodass $y + u \in \Gamma$ und sodass $(y + u) \cdot t = u \cdot t < 0$ im Widerspruch zu $t \in \Gamma^*$. Weil der Schnitt von Γ^* mit der Oberfläche, \sum , der Einheitssphäre des \mathbb{R}^n kompakt ist, folgt die Existenz eines δ_y aus der Tatsache, dass $0 < y \cdot t \quad \forall \Gamma^* \cap \sum$. Insgesamt also

$$\int_{\Gamma^*} e^{-2\pi y \cdot t} dt \le \int_{\Gamma^*} e^{-2\pi \delta |t|} dt < \infty$$

für $y \in \Gamma$. Weil $L^q(\mathbb{R}^n) \supset L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ für $1 \leq q \leq \infty$ folgt

Korollar 3.8. Für alle $y \in \Gamma$ ist $\mathscr{P}(\cdot, y) \in L^q(\mathbb{R}^n)$ mit $1 \leq q \leq \infty$.

Es folgt, dass wenn $f \in L^p(\mathbb{R}^n), 1 \leq p \leq \infty$, dann ist

$$u(x+iy) := \int_{\mathbb{R}^n} f(x-t)\mathscr{P}(t,y)dt$$

für alle $z = x + iy \in T_{\Gamma}$. Weiterhin lässt sich zeigen, dass

$$\lim_{y \to 0, y \in \Gamma} \int_{\mathbb{R}^n} |u(x+iy) - f(x)|^p dx = 0.$$
 (11)

Dies ist eine unmittelbare Konsequenz aus der Tatsache, dass der Kern \mathscr{P} eine Approximation der Identität ist. Dabei meinen wir, dass \mathscr{P} folgende Eigenschaften erfüllt:

- (i) $\mathscr{P}(x,y) \geq 0$
- (ii) $\int_{\mathbb{R}^n} \mathscr{P}(x,y) dx = 1 \quad \forall y \in \Gamma$
- (iii) wenn $\delta>0\,,$ dann $\int_{|x|>\delta}\mathscr{P}(x,y)dx\to 0$ für $y\to 0$

Die erste Bedingung (i) ist offensichtlich. Die zweite (ii) folgt unmittelbar aus (10), nachdem man beide Seiten mit K(2iy) dividiert hat. Um (iii) zu beweisen müssen wir eine Funktion ψ finden, sodass

- (a) ψ ist stetig auf \mathbb{R}^n
- (b) $\lim_{y \in \Gamma, y \to 0} \int_{\mathbb{R}^n} \mathscr{P}(x, y) \psi(x) dx = 1$
- (c) $|\psi(x)| < 1$ für $x \neq 0$ und $\psi(x) \rightarrow 0$, wenn $|x| \rightarrow \infty$.

Angenommen eine solche Funktion existiert, dann folgt aus (b), dass

$$1 = \lim_{y \in \Gamma, y \to 0} \left\{ \int_{|x| \le \delta} \psi(x) \mathscr{P}(x, y) dx + \int_{|x| > \delta} \psi(x) \mathscr{P}(x, y) dx \right\}.$$

Aus (a) und (c) wissen wir, dass ein $\epsilon > 0$ existiert sodass $|\psi(x)| \le 1 - \varepsilon$ für $|x| > \delta$. Deshalb und unter Ausnutzung von (i) und (ii) folgt

$$1 \leq \lim_{y \in \Gamma, y \to 0} \left\{ \int_{|x| \leq \delta} \mathscr{P}(x, y) dx + (1 - \epsilon) \int_{|x| > \delta} \mathscr{P}(x, y) dx \right\}$$

$$= \lim_{y \in \Gamma, y \to 0} \left\{ \int_{\mathbb{R}^n} \mathscr{P}(x, y) dx - \epsilon \int_{|x| > \delta} \mathscr{P}(x, y) dx \right\}$$

$$= \lim_{y \in \Gamma, y \to 0} \left\{ 1 - \epsilon \int_{|x| > \delta} \mathscr{P}(x, y) dx \right\},$$

dies impliziert (iii). Die Existenz von ψ folgt aus

Satz 3.9. Wenn $F \in H^2(T_{\Gamma})$ dann ist

$$F(z) = \int_{\mathbb{D}^n} \mathscr{P}(x - t, y) F(t) dt$$

 $f\ddot{u}r$ alle z = x + iy in T_{Γ} .

Beweis. Sei w=u+iv ein Punkt auf T_{Γ} . Dann gilt für $z\in T_{\Gamma}$, dass

$$|K(z+w)| = |\int_{\Gamma^*} e^{2\pi i(x+u)\cdot t} e^{-2\pi(y+v)\cdot t} dt| \le \int_{\Gamma^*} e^{-2\pi v\cdot t} dt = M_v < \infty.$$

Deshalb gehört F(z)K(z+w), als eine Funktion von z, zu $H^2(T_{\Gamma})$ mit Norm kleiner gleich $||F|| M_v$. Nun können wir Satz 3.6 anwenden und erhalten

$$F(z)K(z+w) = \int_{\mathbb{R}^n} K(z-t)F(t)K(t+w)dt, \tag{12}$$

für alle $z \in T_{\Gamma}$. Für w = -x + iy folgt $K(z - t)K(t + w) = |K(z - t)|^2$ und K(z + w) = K(2iy). Daher ist (12) äquivalent mit

$$F(z) = \int_{\mathbb{R}^n} F(t) \frac{|K(z-t)|^2}{K(2iy)} dt = \int_{\mathbb{R}^n} F(t) \mathscr{P}(x-t, y) dt,$$

was den Satz beweist.

Jetzt konstruieren wir ψ . Dazu sei $\phi \geq 0$ stetig und kompakten Träger in Γ^* , sowie $\int_{\mathbb{R}^n} \phi(t) dt = 1$ (dies ist möglich, weil Γ regulär ist). Wir behaupten, dass

$$\psi(x) = \int_{\mathbb{R}^n} e^{2\pi i x \cdot t} \phi(t) dt = \int_{\Gamma^*} e^{2\pi i x \cdot t} \phi(t) dt$$

(a), (b) und (c) erfüllt. Weil $\phi \in L^1(\mathbb{R}^n)$ folgt (a). Die Tatsache, dass $\psi(x) \to 0$ wenn $|x| \to \infty$ ist ein Spezialfall des Satzes von Riemann-Lebesgue. Wenn $|\psi(x)| = 1$, so z.B. $\psi(x) = e^{2\pi i\Theta}$, dann ist

$$1 = \int_{\mathbb{R}^n} e^{2\pi i[(x \cdot t) - \Theta]} \phi(t) dt = \int_{\mathbb{R}^n} \phi(t) \cos 2\pi [(x \cdot t) - \Theta] dt.$$

Wenn $x \neq 0$ dann muss $\cos 2\pi [(x \cdot t) - \Theta]$, als eine Funktion von t, echt kleiner als 1 in einer Teilmenge des Trägers von ϕ mit positiven Mass sein. Dies zusammen mit der Annahme, dass ϕ nicht negativ ist und

$$\int_{\mathbb{R}^n} \phi(t)dt = 1$$

impliziert dass $|\psi(x)|<1$ für $x\neq 0\,.$ Um (b) zu zeigen, setzen wir

$$F(z) = \int_{\Gamma^*} e^{2\pi i z \cdot t} \phi(t) dt$$

für $z \in T_{\Gamma}$. Nach Satz 3.3 gehört $\, F \,$ zu $\, H^2(T_{\Gamma}) \,$ und es folgt, dass

$$F(x) = \lim_{y \in \Gamma, y \to 0} F(x + iy) = \int_{\Gamma^*} e^{2\pi i x \cdot t} \phi(t) dt = \psi(x)$$

mit der L^2 -Norm. Weiterhin folgt aus dem Satz von Lebesgue, dass

$$F(0) = \lim_{y \in \Gamma, y \to 0} F(0 + iy) = \psi(0) = 1.$$
(13)

Eine Anwendung von Satz 3.9 ergibt

$$F(x+iy) = \int_{\mathbb{R}^n} \mathscr{P}(x-t,y)F(t)dt = \int_{\mathbb{R}^n} \mathscr{P}(x-t,y)\psi(t)dt. \tag{14}$$

Weil $\mathscr{P}(-t,y) = \mathscr{P}(t,y)$, zusammen mit (14) und (13) ergibt (b).

4 Satz von Paley Wiener

Definition 4.1. Eine Funktion F des \mathbb{C}_1 ist von Exponentieller Ordnung $\sigma > 0$, wenn für alle $\epsilon > 0$ eine Konstante A_{ϵ} existiert, sodass

$$|F(z)| \le A_{\epsilon} e^{(\sigma + \epsilon)|z|}$$

für alle $z \in \mathbb{C}_1$.

Beispiel. Sei $f \in L^2(-\tau,\tau)$, wir definieren eine ganze Funktion, F, durch

$$F(z) = \int_{-\tau}^{\tau} f(t)e^{2\pi i zt}dt.$$

Dann ist

$$|F(z)| = |F(x+iy)| \le \sqrt{2\tau} \left(\int_{-\tau}^{\tau} |f(t)|^2 dt \right)^{\frac{1}{2}} e^{2\pi\tau|y|} \le A e^{2\pi\tau|z|}$$

und F vom Exponentieller Ordnung $\sigma = 2\pi\tau$.

Satz 4.2 (Paley-Wiener). Sei $F \in L^2(-\infty, \infty)$. Dann ist die Fouriertransformierte von F eine Funktion die außerhalb von $[-(\frac{\sigma}{2\pi}), \frac{\sigma}{2\pi}] = [-\tau, \tau]$ genau dann verschwindet, wenn F auf der reellen Achse die Begrenzung einer ganzen Funktion mit Exponentieller Ordnung σ ist.

Lemma 4.3. Sei S ein Gebiet in \mathbb{C}_1 , welches durch 2 Geraden, die sich im Ursprung mit dem Winkel π/α schneiden, begrenzt wird. Weiterhin sei f analytisch auf \overline{S} und $|f(z)| \leq A \exp(|z|^{\beta}), 0 \leq \beta < \alpha, z \in S$. Dann folgt aus $|f(z)| \leq M$ auf den 2 begrenzenden Geraden, dass $|f(z)| \leq M$ für alle $z \in S$.

Beweis. OBdA kann man annehmen, dass die beiden Geraden die reelle Achse im Winkel $\pi/2\alpha$ und $-\pi/2\alpha$ schneiden. Sei $F(z) = f(z) \exp(-\epsilon z^{\gamma})$ mit $\beta < \gamma < \alpha$ und $\epsilon > 0$. Es folgt unmittelbar, dass $|F(z)| \le |f(z)| \le M$ auf den beiden Geraden. Weiterhin gilt auf dem Kreisbogen $R = |z| = |re^{i\Theta}|$, $-(\pi/2\alpha) \le \Theta \le \pi/2\alpha$, $|F(z)| \le A \exp(R^{\beta} - \epsilon R^{\gamma} \cos(\gamma \pi/2\alpha))$. Betrachtet man den letzten Ausdruck genauer, so geht dieser gegen 0 für $R \to \infty$. Daher ist $|F(z)| \le M$ auf dem Kreisbogen (vorausgesetzt R ist groß genug). Aus dem Maximum-Modulo Prinzip folgt $|F(z)| \le M$ ∀ $z \in \overline{S}$ mit $|z| \in \overline{S}$. Daher ist $|f(z)| \le M \exp(\epsilon r^{\gamma} \cos(\gamma \Theta))$ für alle $z = re^{i\Theta} \in \overline{S}$. Die Behauptung folgt für $\epsilon \to 0$. □

Lemma 4.4. Sei F von exponentieller Ordnung σ und $|F(z)| \leq 1$ für reelles x dann ist $|F(x+iy)| \leq \exp(\sigma|y|)$ für komplexes z.

Beweis. Für $\epsilon>0$ setzen wir $F_{\epsilon}(z)=F(z)e^{i(\sigma+\epsilon)z}$. Weil F von exponentieller Ordnung σ ist, folgt

$$|F_{\epsilon}(iy)| = |F(iy)|e^{-(\sigma+\epsilon)y} \le A_{\epsilon}$$

für $y \ge 0$. Außerdem ist $|F_{\epsilon}(x)| \le 1$ für reelles x. Dies gibt uns eine Begrenzung für F auf der reellen x und y-Achse. Außerdem können wir ein B finden, sodass

$$|F_{\epsilon}(z)| \le A_{\epsilon}e^{(\sigma+\epsilon)(|z|-y)} \le A_{\epsilon}e^{2(\sigma+\epsilon)|z|} \le Be^{|z|^{3/2}}.$$

Eine Anwendung des Lemmas 4.3 mit $\beta = \frac{3}{2} < 2 = \alpha$ liefert

$$|F_{\epsilon}(z)| \le \max(A_{\epsilon}, 1) = A$$

für z=x+iy und $x,y\geq 0$. Wenn wir dieses Argument für den zweiten Quadranten wiederholen, können wir wiederum das Lemma ?? auf F_{ϵ} anwenden, welches dann durch die obere Halbebene begrenzt wird mit $\beta=0<1=\alpha$, dadurch $F_{\epsilon}(x+iy)|\leq 1$ für $y\geq 0$. Für $\epsilon\to 0$ erhalten wir $|F(z)|=|F(x+iy)\leq \exp(\sigma y)$, $y\geq 0$. Die Behauptung folgt für G(z)=F(-z).

Lemma 4.5. Sei F von exponentieller Ordnung σ und seine Majorante bzgl. der x-Achse hat L^2 -Norm ≤ 1 . Dann gilt

$$\left(\int_{-\infty}^{\infty} |F(x+iy)|^2 dx\right)^{1/2} \le e^{\sigma|y|}$$

für alle reellen y.

Beweis. Sei ϕ eine beschränkte Funktion einer reellen Variablen mit kompakten Träger und $\|\phi\|_2 \leq 1$. Sei weiterhin $G(z) = \int_{-\infty}^{\infty} F(z+t)\phi(t)dt$. G ist analytisch und für $\epsilon > 0$ gilt

$$|G(z)| \le \int_{-\infty}^{\infty} A_{\epsilon} e^{(\sigma+\epsilon)|z|} e^{(\sigma+\epsilon)|t|} |\phi(t)| dt = B_{\epsilon} e^{(\sigma+\epsilon)|z|}.$$

Also ist G von exponentieller Ordnung σ . Eine Anwendung der Schwartz'schen Ungleichung liefert

$$|G(x)| \le (\int_{-\infty}^{\infty} |F(x)|^2 dx)^{1/2} (\int_{-\infty}^{\infty} |\phi(x)|^2 dx)^{1/2} \le 1.$$

Eine Anwendung des Lemmas 4.4 liefert

$$\left| \int_{-\infty}^{\infty} F(z+t)\phi(t)dt \right| = |G(z)| = |G(x+iy)| \le e^{\sigma|y|}$$
 (15)

für reelles y. Wenn wir das Supremum über alle ϕ nehmen, erhalten wir die Behauptung.

Beweis. [Paley-Wiener] Sei F von exponentieller Ordnung σ und seine Begrenzung bzgl. der reellen Achse gehört zu $L^2(-\infty,\infty)$. Wir zeigen, dass die inverse Fouriertransformation dieser Begrenzung außerhalb des Intervalls $[-(\sigma/2\pi),\sigma/2\pi]=[-\tau,\tau]$ verschwindet. Sei OBdA $\int_{-\infty}^{\infty} |F(x)|^2 dx \leq 1$ und $G_+(z)=e^{i\sigma z}F(z)$. Dann gilt wegen Lemma 4.5 für $y\geq 0$

$$(\int_{-\infty}^{\infty} |G_{+}(x+iy)|^{2} dx)^{1/2} = e^{-\sigma y} (\int_{-\infty}^{\infty} |F(x+iy)|^{2} dx)^{1/2}$$

$$< e^{-\sigma y} e^{\sigma y} = 1.$$

Daher gehört G_+ zu $H^2(\mathbb{R}^2_+)$. Also existiert ein $g \in L^2(-\infty, \infty)$, welches auf der negativen Achse verschwindet, sodass

$$G_{+}(x+iy) = G_{+}(z) = \int_{0}^{\infty} g(t)e^{2\pi izt}dt$$

für $\,y>0\,.$ Für $\,f(s)=g(\tau-s)=g[(\sigma/2\pi)-s]\,$ ist dies äquivalent mit

$$F(z) = F(x + iy) = \int_{-\infty}^{\tau} f(s)e^{-2\pi izs}ds$$

für y>0. Beim Grenzübergang $y\to 0$, erkennt man, dass die inverse Fouriertransformierte von F(x) für $s\le \tau$ fast überall verschwindet. Wendet man dieses Argument auf F(-z) an so sieht man, dass es für fast alle $s\le -\tau$ verschwindet.

Definition 4.6. Sei $K \subset \mathbb{R}^n$, dann ist durch $K^* = \{y \in \mathbb{R}^n | x \cdot y \leq 1 \quad \forall x \in K\}$ die Polarmenge von K definiert. Weiterhin ist durch

$$||y||^* = \sup_{x \in K} |x \cdot y|$$

die Dualnorm definiert.

Beispiel. Sei $p \ge 1$ und $K = \{x = (x_1, x_2) \in \mathbb{R}^2 : |x_1|^p + |x_2|^p \le 1\}$. Dann ist $K^* = \{y = (y_1, y_2) \in \mathbb{R}^2 : |y_1|^q + |y_2|^q \le 1\}$ mit 1 = 1/p + 1/q.

Lemma 4.7. Sei $K \subset \mathbb{R}^n$ konvex, abgeschlossen und $0 \in K$. Dann ist $K^{**} = (K^*)^* = K$.

Beweis. Offenbar ist $K \subset K^{**}$, daher genügt es zu zeigen, dass wenn $x_0 \notin K$ dann auch $x_0 \notin K^{**}$. Sei x_0 solch ein Punkt. Wir wählen $y \in K$ so, dass $|y - x_0|$ minimal ist. Dann partitioniern wir den \mathbb{R}^n in 2 Teilmengen $\{x \in \mathbb{R}^n : x \cdot (x_0 - y) > y \cdot (x_0 - y)\}$ und $\{x \in \mathbb{R}^n : x \cdot (x_0 - y) \le y \cdot (x_0 - y)\}$. Weil $x_0 \cdot (x_0 - y) - y \cdot (x_0 - y) = |x_0 - y|^2 > 0$ gehört x_0 zum ersteren.

Wir nehmen an, dass K zum Letzteren gehört, denn wäre dem nicht so, dann würde ein $y_1 \in K$ existieren, sodass $(y_1-y)\cdot(x_0-y)>0$. Sei $\alpha<1$ sodass $0<\alpha<2(y_1-y)/|y_1-y|^2$. Weil K konvex ist, ist $w=(1-\alpha)y+\alpha y_1\in K$ und wir haben

$$|w - x_0|^2 = \alpha \left\{ \alpha |y_1 - y|^2 - 2(y_1 - y) \cdot (x_0 - y) \right\} + |y - x_0|^2 < |y - x_0|^2$$

im Widerspruch dazu, dass $|y-x_0|$ minimal ist. Weil $0 \in K$ folgt $y \cdot (x_0-y) \geq 0$. Also können wir eine positive Konstante ϵ finden, sodass $x_0 \cdot (x_0-y) > \epsilon$ und $x \cdot (x_0-y) \leq \epsilon$ für alle $x \in K$ (wenn $y \cdot (x_0-y) > 0$ können wir $\epsilon = y \cdot (x_0-y)$ wählen, weil jedes positives $\epsilon < x_0 \cdot (x_0-y)$ gewählt werden kann, wenn $y \cdot (x_0-y) = 0$). Sei $v = (x_0-y)/\epsilon$, also

$$K \subset \{x \in \mathbb{R}^n | x \cdot v < 1\}$$
 und $x_0 \cdot v > 1$.

Dies bedeutet jedoch, dass $v \in K^*$ und das x_0 nicht zu K^{**} gehört.

Definition 4.8. Eine ganze Funktion F auf \mathbb{C}_n ist von exponentieller Ordnung K, wobei K ein symmetrischer Körper, wenn für jedes $\epsilon > 0$ eine Konstante A_{ϵ} existiert, sodasss

$$|F(z)| < A_{\epsilon}e^{2\pi(1+\epsilon)||z||}$$

für alle $z \in \mathbb{C}_n$. Die Klasse aller Funktionen mit exponentieller Ordnung K wird im Folgenden mit $\mathscr{E}(K)$ bezeichnet.

Satz 4.9 (Paley-Wiener). Sei $F \in L^2(\mathbb{R}^n)$. Dann ist F genau dann die Fouriertransformierte einer Funktion, die außerhalb eines symmetrischen Körpers K verschwindet, wenn F im \mathbb{R}^n die Majorante einer Funktion in $\mathcal{E}(K^*)$ ist.

Beweis. Wenn F die Fouriertransformierte einer Funktion f ist, die außerhalb von K verschwindet, dann erweitert

$$F(z) = \int_{\mathbb{R}^n} e^{-2\pi i z \cdot t} f(t) dt = \int_K e^{-2\pi i x \cdot t} e^{2\pi y \cdot t} f(t) dt$$

F zu einer Funktion in $\mathscr{E}(K^*)$. Es folgt, dass

$$|F(z)| = |F(x+iy)| \le Ae^{2\pi||y||^*}.$$

Lemma 4.10. Sei $F \in \mathcal{E}(K^*)$, dann gilt

$$\left(\int_{\mathbb{R}^n} |F(x+iy)|^2 dx\right)^{1/2} \le e^{2\pi ||y||^*} \left(\int_{\mathbb{R}^n} |F(x)|^2 dx\right)^{1/2}.$$

Beweis. Wir reduzieren die Ungleichung auf den 1-dimensionalen Fall. Sei $y \in \mathbb{R}^n/\{0\}$ fest und e_1 ein Einheitsvektor des \mathbb{R}^n in Richtung von y. Wir bilden eine Orthonormalbasis $\{e_1,...,e_n\}$ des \mathbb{R}^n . Dazu fixieren wir (n-1) reelle Zahlen $u_2,...,u_n$, setzen $\alpha = \sum_{j=2}^n u_j e_j$ und definieren

$$\phi(w_1) := F(w_1 e_1 + \alpha).$$

Offensichtlich ist ϕ eine ganze Funktion der komplexen Variablen $w_1 = u_1 + iv_1$. Weiterhin ist ϕ von exponentieller Ordnung $2\pi \|e_1\|^*$. Sei $\epsilon > 0$, dann folgt aus $F \in \mathcal{E}(K^*)$ die Existenz einer Konstante A_{ϵ} , so dass

$$|\phi(w_1)| \leq A_{\epsilon} \exp(2\pi \|w_1 e_1 + \alpha\|^* (1 + \epsilon))$$

$$\leq [A_{\epsilon} \exp(2\pi (1 + \epsilon) \|\alpha\|^*)] e^{2\pi \|e_1\|^* (1 + \epsilon) |w_1|}$$

$$= A_{\epsilon}' e^{2\pi \|e_1\|^* (1 + \epsilon) |w_1|}.$$

Aus Lemma 4.5 folgt

$$\int_{-\infty}^{\infty} |\phi(u_1 + iv_1)|^2 du_1 \le e^{4\pi \|e_1\|^* |v_1|} \int_{-\infty}^{\infty} |\phi(u_1)|^2 du_1$$

für alle $v_1 \in (-\infty, \infty)$. Sei v_1 so gewählt, dass $y = v_1 e_1$, es folgt

$$\int_{-\infty}^{\infty} |F(iy + \sum_{j=1}^{n} u_j e_j)|^2 du_1 \le e^{4\pi ||y||^*} \int_{-\infty}^{\infty} |F(\sum_{j=1}^{n} u_j e_j)|^2 du_1.$$

Integration beider Seiten ergibt die Behauptung.

Beweis. [Paley Wiener] Sei F die Majorante im \mathbb{R}^n einer Funktion in $\mathscr{E}(K^*)$. Nach dem Lemma folgt, dass $F \in H^2(T_B)$ für alle abgeschlossenen Basen B. Daher existiert nach Satz 2.1 ein f, sodass

$$F(z) = \int_{\mathbb{R}^n} e^{2\pi i z \cdot t} f(t) dt$$

für alle $z=x+iy\in T_B$. Wir können annehmen dass $0\in B$, denn der Satz von Plancherel garantiert ein $f\in L^2(\mathbb{R}^n)$ und $\|f\|_2^2=\int_{\mathbb{R}^n}|F(x)|^2dx$. Also ist F die Fourierinverse von f. Es fehlt noch zu zeigen, dass f außerhalb K verschwindet. Um dies zu beweisen, halten wir erst einmal fest, dass die Fouriertransformation impliziert, dass

$$\int_{\mathbb{R}^n} |F(x+iy)|^2 dx = \int_{\mathbb{R}^n} e^{-4\pi y \cdot t} |f(t)|^2 dt$$

für alle $y \in \mathbb{R}^n$. Deshalb und wegen Lemma 4.10 erhalten wir

$$\int_{\mathbb{R}^n} |f(t)|^2 e^{-4\pi y \cdot t} dt \le e^{4\pi \|y\|^*} \int_{\mathbb{R}^n} |f(t)|^2 dt \tag{16}$$

für alle $y \in \mathbb{R}^n$. Wir behaupten weiterhin, dass diese Ungleichung nur gilt, wenn f fast überall außerhalb K verschwindet. Angenommen $t_0 \notin K$, dann garantiert Lemma 4.7 die Existenz eines $y_0 \in K^*$, sodass $(t_0 \cdot y_0) < -1$ (K^* ist symmetrisch). Also können wir ein $\delta > 0$ und eine Umgebung $N = N(t_0)$ von t_0 finden, sodass $(t \cdot y_0) < -(1 + \delta) \quad \forall t \in N$. Also erhalten wir für $y = \rho y_0 (\rho > 0)$ und (16)

$$\int_{N} |f(t)|^{2} e^{4\pi\rho(1+\delta)} dt \le \int_{N} |f(t)|^{2} e^{-4\pi y \cdot t} dt \le ||f||_{2}^{2} e^{4\pi\rho||y_{0}||^{*}}.$$

Weil $y_0 \in K^*$ muss $||y_0||^* \le 1$ sein. Wir erhalten

$$\left(\int_{N} |f(t)|^{2} dt \right) e^{4\pi\rho(1+\delta)} \le \|f\|_{2}^{2} e^{4\pi\rho}$$

für alle $\rho > 0$. Wenn $\int_N |f(t)|^2 dt$ nicht Null sein soll, impliziert dies

$$e^{4\pi\rho\delta} \le \frac{\|f\|_2^2}{\int_N |f(t)|^2 dt},$$

was offensichtlich für große ρ unmöglich ist. Daher f(t)=0 für fast alle $t\in N$. Die Behauptung folgt.

Literatur

- [1] Elias M. Stein and Guido Weiss, "Introduction to FOURIER ANALYSIS ON EUCLI-DEAN SPACES", Princeton University Press, Princeton, New Jersey, 1990
- [2] I. N. Bronstein und K. A. Semendjajew, "Taschenbuch der Mathematik", Verlag Harri Deutsch, Frankfurt am Main, 2003